2022-09-26TypeScript00
请注意,本文编写于 580 天前,最后修改于 580 天前,其中某些信息可能已经过时。

解决 TS 问题的最好办法就是多练,这次解读 type-challenges Medium 难度 41~48 题。

精读

ObjectEntries

实现 TS 版本的 Object.entries

interface Model {
  name: string;
  age: number;
  locations: string[] | null;
}
type modelEntries = ObjectEntries<Model> // ['name', string] | ['age', number] | ['locations', string[] | null];

经过前面的铺垫,大家应该熟悉了 TS 思维思考问题,这道题看到后第一个念头应该是:如何先把对象转换为联合类型?这个问题不解决,就无从下手。

对象或数组转联合类型的思路都是类似的,一个数组转联合类型用 [number] 作为下标:

['1', '2', '3']['number'] // '1' | '2' | '3'

对象的方式则是 [keyof T] 作为下标:

type ObjectToUnion<T> = T[keyof T]

再观察这道题,联合类型每一项都是数组,分别是 Key 与 Value,这样就比较好写了,我们只要构造一个 Value 是符合结构的对象即可:

type ObjectEntries<T> = {
  [K in keyof T]: [K, T[K]]
}[keyof T]

为了通过单测 ObjectEntries<{ key?: undefined }>,让 Key 位置不出现 undefined,需要强制把对象描述为非可选 Key:

type ObjectEntries<T> = {
  [K in keyof T]-?: [K, T[K]]
}[keyof T]

为了通过单测 ObjectEntries<Partial<Model>>,得将 Value 中 undefined 移除:

// 本题答案
type RemoveUndefined<T> = [T] extends [undefined] ? T : Exclude<T, undefined>
type ObjectEntries<T> = {
  [K in keyof T]-?: [K, RemoveUndefined<T[K]>]
}[keyof T]

Shift

实现 TS 版 Array.shift

type Result = Shift<[3, 2, 1]> // [2, 1]

这道题应该是简单难度的,只要把第一项抛弃即可,利用 infer 轻松实现:

// 本题答案
type Shift<T> = T extends [infer First, ...infer Rest] ? Rest : never

Tuple to Nested Object

实现 TupleToNestedObject<T, P>,其中 T 仅接收字符串数组,P 是任意类型,生成一个递归对象结构,满足如下结果:

type a = TupleToNestedObject<['a'], string> // {a: string}
type b = TupleToNestedObject<['a', 'b'], number> // {a: {b: number}}
type c = TupleToNestedObject<[], boolean> // boolean. if the tuple is empty, just return the U type

这道题用到了 5 个知识点:递归、辅助类型、infer、如何指定对象 Key、PropertyKey,你得全部知道并组合起来才能解决该题。

首先因为返回值是个递归对象,递归过程中必定不断修改它,因此给泛型添加第三个参数 R 存储这个对象,并且在递归数组时从最后一个开始,这样从最内层对象开始一点点把它 “包起来”:

type TupleToNestedObject<T, U, R = U> = /** 伪代码
  T extends [...infer Rest, infer Last]
*/

下一步是如何描述一个对象 Key?之前 Chainable Options 例子我们学到的 K in Q,但需要注意直接这么写会报错,因为必须申明 Q extends PropertyKey。最后再处理一下递归结束条件,即 T 变成空数组时直接返回 R

// 本题答案
type TupleToNestedObject<T, U, R = U> = T extends [] ? R : (
  T extends [...infer Rest, infer Last extends PropertyKey] ? (
    TupleToNestedObject<Rest, U, {
      [P in Last]: R
    }>
  ) : never
)

Reverse

实现 TS 版 Array.reverse

type a = Reverse<['a', 'b']> // ['b', 'a']
type b = Reverse<['a', 'b', 'c']> // ['c', 'b', 'a']

这道题比上一题简单,只需要用一个递归即可:

// 本题答案
type Reverse<T extends any[]> = T extends [...infer Rest, infer End] ? [End, ...Reverse<Rest>] : T

Flip Arguments

实现 FlipArguments<T> 将函数 T 的参数反转:

type Flipped = FlipArguments<(arg0: string, arg1: number, arg2: boolean) => void> 
// (arg0: boolean, arg1: number, arg2: string) => void

本题与上题类似,只是反转内容从数组变成了函数的参数,只要用 infer 定义出函数的参数,利用 Reverse 函数反转一下即可:

// 本题答案
type Reverse<T extends any[]> = T extends [...infer Rest, infer End] ? [End, ...Reverse<Rest>] : T

type FlipArguments<T> =
  T extends (...args: infer Args) => infer Result ? (...args: Reverse<Args>) => Result : never

FlattenDepth

实现指定深度的 Flatten:

type a = FlattenDepth<[1, 2, [3, 4], [[[5]]]], 2> // [1, 2, 3, 4, [5]]. flattern 2 times
type b = FlattenDepth<[1, 2, [3, 4], [[[5]]]]> // [1, 2, 3, 4, [[5]]]. Depth defaults to be 1

这道题比之前的 Flatten 更棘手一些,因为需要控制打平的次数。

基本想法就是,打平 Deep 次,所以需要实现打平一次的函数,再根据 Deep 值递归对应次:

type FlattenOnce<T extends any[], U extends any[] = []> = T extends [infer X, ...infer Y] ? (
  X extends any[] ? FlattenOnce<Y, [...U, ...X]> : FlattenOnce<Y, [...U, X]>
) : U

然后再实现主函数 FlattenDepth,因为 TS 无法实现 +、- 号运算,我们必须用数组长度判断与操作数组来辅助实现:

// FlattenOnce
type FlattenDepth<
  T extends any[],
  U extends number = 1,
  P extends any[] = []
> = P['length'] extends U ? T : (
  FlattenDepth<FlattenOnce<T>, U, [...P, any]>
)

当递归没有达到深度 U 时,就用 [...P, any] 的方式给数组塞一个元素,下次如果能匹配上 P['length'] extends U 说明递归深度已达到。

但考虑到测试用例 FlattenDepth<[1, [2, [3, [4, [5]]]]], 19260817> 会引发超长次数递归,需要提前终止,即如果打平后已经是平的,就不用再继续递归了,此时可以用 FlattenOnce<T> extends T 判断:

// 本题答案
// FlattenOnce
type FlattenDepth<
  T extends any[],
  U extends number = 1,
  P extends any[] = []
> = P['length'] extends U ? T : (
  FlattenOnce<T> extends T ? T : (
    FlattenDepth<FlattenOnce<T>, U, [...P, any]>
  )
)

BEM style string

实现 BEM 函数完成其规则拼接:

Expect<Equal<BEM<'btn', [], ['small', 'medium', 'large']>, 'btn--small' | 'btn--medium' | 'btn--large' >>,

之前我们了解了通过下标将数组或对象转成联合类型,这里还有一个特殊情况,即字符串中通过这种方式申明每一项,会自动笛卡尔积为新的联合类型:

type BEM<B extends string, E extends string[], M extends string[]> = 
  `${B}__${E[number]}--${M[number]}`

这是最简单的写法,但没有考虑项不存在的情况。不如创建一个 SafeUnion 函数,当传入值不存在时返回空字符串,保证安全的跳过:

type IsNever<TValue> = TValue[] extends never[] ? true : false;
type SafeUnion<TUnion> = IsNever<TUnion> extends true ? "" : TUnion;

最终代码:

// 本题答案
// IsNever, SafeUnion
type BEM<B extends string, E extends string[], M extends string[]> = 
  `${B}${SafeUnion<`__${E[number]}`>}${SafeUnion<`--${M[number]}`>}`

InorderTraversal

实现 TS 版二叉树中序遍历:

const tree1 = {
  val: 1,
  left: null,
  right: {
    val: 2,
    left: {
      val: 3,
      left: null,
      right: null,
    },
    right: null,
  },
} as const

type A = InorderTraversal<typeof tree1> // [1, 3, 2]

首先回忆一下二叉树中序遍历 JS 版的实现:

function inorderTraversal(tree) {
  if (!tree) return []
  return [
    ...inorderTraversal(tree.left),
    res.push(val),
    ...inorderTraversal(tree.right)
  ]
}

对 TS 来说,实现递归的方式有一点点不同,即通过 extends TreeNode 来判定它不是 Null 从而递归:

// 本题答案
interface TreeNode {
  val: number
  left: TreeNode | null
  right: TreeNode | null
}
type InorderTraversal<T extends TreeNode | null> = [T] extends [TreeNode] ? (
  [
    ...InorderTraversal<T['left']>,
    T['val'],
    ...InorderTraversal<T['right']>
  ] 
): []

你可能会问,问什么不能像 JS 一样,用 null 做判断呢?

type InorderTraversal<T extends TreeNode | null> = [T] extends [null] ? [] : (
  [ // error
    ...InorderTraversal<T['left']>,
    T['val'],
    ...InorderTraversal<T['right']>
  ] 
)

如果这么写会发现 TS 抛出了异常,因为 TS 不能确定 T 此时符合 TreeNode 类型,所以要执行操作时一般采用正向判断。

总结

这些类型挑战题目需要灵活组合 TS 的基础知识点才能破解,常用的包括:

  • 如何操作对象,增减 Key、只读、合并为一个对象等。
  • 递归,以及辅助类型。
  • infer 知识点。
  • 联合类型,如何从对象或数组生成联合类型,字符串模板与联合类型的关系。

本文作者:前端小毛

本文链接:

版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!